# This line will add a button to toggle visibility of code blocks,
# for use with the HTML export version
from IPython.core.display import HTML
HTML('''<button style="margin:0 auto; display: block;" onclick="jQuery('.code_cell .input_area').toggle();
jQuery('.prompt').toggle();">Toggle code</button>''')
Dr. David Elliott
Common Notation
Notes
We can't always perfectly separate the data with a $p − 1$ dimensional hyperplane. To overcome this problem we could either:
%matplotlib inline
import os # locating directories
import numpy as np # Arrays
import pandas as pd # DataFrames
# Plotting
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['animation.embed_limit'] = 30000000.0
import seaborn as sns; sns.set()
from sklearn.datasets import load_iris # for the Iris data
from IPython.display import Image # displaying .png images
from sklearn.svm import SVC, LinearSVC # SVM
from mpl_toolkits.mplot3d import Axes3D # 3d plots
from sklearn.preprocessing import StandardScaler # scaling features
from sklearn.preprocessing import LabelEncoder # binary encoding
from sklearn.pipeline import Pipeline # combining classifier steps
from sklearn.preprocessing import PolynomialFeatures # make PolynomialFeatures
from sklearn.datasets import make_classification, make_moons # make example data
import itertools
from time import time
import joblib # saving models
import warnings # prevent warnings
# colours for print()
class color:
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'
image_dir = os.path.join(os.getcwd(),"Images")
# Initial fig number
fig_num=15
plt.rcParams['figure.dpi'] = 120
# golden ratio for figures ()
gr = 1.618
height_pix = 500
width_pix = height_pix*gr
height_inch = 4
width_inch = height_inch*gr
iris = load_iris(as_frame=True) # data stored in a `sklearn.utils.Bunch`
iris_df = iris['data'] # get features DataFrame
target = iris['target'] # get target Series
# get the labels of flowers capitalised for visualisation
target_names = list(map(lambda s: s.capitalize(), iris['target_names']))
# create a dictionary with the original labels decoded (inverse of LabelEncoder)
decode_label = dict(zip(range(3), target_names))
# make a label encoder to use later if needed
le = LabelEncoder().fit(target_names)
# add the target labels to df for visualisation purposes
iris_vis = pd.concat([iris_df, target],axis=1)
# turn the ints to labels
iris_vis["target"] = iris_vis["target"].replace(decode_label)
# Capitalize column names for plotting
iris_vis.columns = [x.capitalize() for x in list(iris_vis.columns)]
# reduce the data for example
X_AX_LABEL = "Petal length (cm)"
Y_AX_LABEL = "Petal width (cm)"
REMOVE = "Virginica"
iris_reduced = iris_vis[[X_AX_LABEL, Y_AX_LABEL, "Target"]]
iris_reduced = iris_reduced[iris_reduced.Target != REMOVE]
# Centered figures in the notebook and presentation
# ...was a real pain to find this:
# https://gist.githubusercontent.com/maxalbert/800b9f06c7b2dd365ea5
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import urllib
import base64
from io import BytesIO, StringIO
def fig2str(fig, format='svg'):
"""
Return a string containing the raw data of the matplotlib figure in the given format.
"""
assert isinstance(fig, matplotlib.figure.Figure)
imgdata = BytesIO()
fig.savefig(imgdata, format=format, bbox_inches='tight')
imgdata.seek(0) # rewind the data
output = imgdata.getvalue()
if format == 'svg':
return output
else:
return urllib.parse.quote(base64.b64encode(output))
class MatplotlibFigure(object):
"""
Thin wrapper around a matplotlib figure which provides a custom
HTML representation that allows tweaking the appearance
"""
def __init__(self, fig, centered=False):
assert isinstance(fig, matplotlib.figure.Figure)
self.centered = centered
def _repr_html_(self):
img_str_png = fig2str(fig, format='png')
uri = 'data:image/png;base64,' + img_str_png
html_repr = "<img src='{}'>".format(uri)
if self.centered:
html_repr = "<center>" + html_repr + "</center>"
return html_repr
SVC's are a generalisation and extension of the maximal margin classifier so it can be applied to a broader range of cases$^1$.
In practice they are more robust to individual observations and better classify most training observations than the Maximal Margin Classifier. This is because they take the approach it is better to missclassify some training examples in order to do a better job classifying the rest.
This is called a soft margin as it allows some violations by the training data by a small subset of training observation, not only on the wrong side of the margin, but wrong side of the hyperplane.
Notes
def svc_decision_boundary(clf, xmin=0, xmax=5.5, highlight=True, axes_limit = [0, 5.5, 0, 2]):
w = clf.coef_[0]
b = clf.intercept_[0]
# At the decision boundary, w0*x0 + w1*x1 + b = 0
# => x1 = -w0/w1 * x0 - b/w1
x0 = np.linspace(xmin, xmax, 200)
decision_boundary = -w[0]/w[1] * x0 - b/w[1]
margin = 1/w[1]
gutter_up = decision_boundary + margin
gutter_down = decision_boundary - margin
svs = clf.support_vectors_
if highlight:
g = sns.scatterplot(x = svs[:, 0], y = svs[:, 1], s=180, facecolors='#FFAAAA')
plt.plot(x0, decision_boundary, "g-", linewidth=2)
plt.plot(x0, gutter_up, "r--", linewidth=2)
plt.plot(x0, gutter_down, "r--", linewidth=2)
plt.axis(axes_limit)
def soft_margin(title, hyperplane=False):
virgin_versi = iris_vis[["Petal length (cm)", "Petal width (cm)", "Target"]]
virgin_versi = virgin_versi[virgin_versi.Target != "Setosa"]
X = virgin_versi[["Petal length (cm)", "Petal width (cm)"]].values
y = virgin_versi[["Target"]].replace({'Versicolor':0, 'Virginica':1}).values.ravel()
if hyperplane:
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(X, y)
svc_decision_boundary(svm_clf, 2.9, 7)
labels = virgin_versi[["Target"]].values.ravel()
sns.scatterplot(x = X[:,0], y = X[:,1], hue=labels, style = labels)
plt.axis([2.9, 7, 0.9, 2.75])
plt.title(title)
plt.xlabel("Petal Length (cm)")
plt.ylabel("Petal Width (cm)")
fig_num+=1
fig = plt.figure(figsize=(width_inch, height_inch))
soft_margin("Figure %d: No Exact Linear Separating Hyperplane"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
fig_num+=1
fig = plt.figure(figsize=(width_inch, height_inch))
soft_margin("Figure %d: Soft Margin Hyperplane"%fig_num, hyperplane=True)
plt.savefig(os.path.join(image_dir,"Soft_Margin_Hyperplane.png"))
plt.close()
display(MatplotlibFigure(fig, centered=True))
We want to relax the following constraints when necessary:
$$ \mathbf{w}^{\mathrm T}\mathbf{x}_i + b \geq 1 \text{ for } y_i = 1, \\ \mathbf{w}^{\mathrm T}\mathbf{x}_i + b \leq -1 \text{ for } y_i = -1 $$This can be done by introducing positive slack variables $\xi_i, i = 1, \ldots, n$ in the constraints$^{5,6,10}$:
$$ \mathbf{w}^{\mathrm T}\mathbf{x}_i + b \geq 1 - \xi_i \quad \text{if} \quad y_i = 1, \\ \mathbf{w}^{\mathrm T}\mathbf{x}_i + b \leq -1 + \xi_i \quad \text{if} \quad y_i = -1, \\ \xi_i \geq 0 \quad \forall_i. $$Notes
To ensure there is a penelty, $C$, for relaxing the constraint, we can change our objective function to be minimised from $\frac{1}{2}||\mathbf{w}||^2$ to,
$$ \begin{align*} {\text{minimise} \atop \mathbf{w}, b, \xi } & \quad \frac{1}{2}||\mathbf{w}||^2+C\sum\limits_{i=1}^n\xi_i, \\ \text{subject to} & \quad y_i(\mathbf{w}^{\mathrm T}\mathbf{x}_i+b) \geq 1-\xi_i, \quad \xi_i \geq 0, \quad \forall_i. \end{align*} $$$C$ is a tuning parameter that controls the bias-variance trade-off$^1$.
The strength of the regularization is inversely proportional to $C$, meaning a large $C$ has a larger error penalty.
def soft_margin(c_list, main_title):
virgin_versi = iris_vis[["Petal length (cm)", "Petal width (cm)", "Target"]]
virgin_versi = virgin_versi[virgin_versi.Target != "Setosa"]
X = virgin_versi[["Petal length (cm)", "Petal width (cm)"]].values
y = virgin_versi[["Target"]].replace({'Versicolor':0, 'Virginica':1}).values.ravel()
scaler = StandardScaler()
svm_clf1 = LinearSVC(C=c_list[0], loss="hinge", random_state=42)
svm_clf2 = LinearSVC(C=c_list[1], loss="hinge", random_state=42)
scaled_svm_clf1 = Pipeline([
("scaler", scaler),
("linear_svc", svm_clf1),
])
scaled_svm_clf2 = Pipeline([
("scaler", scaler),
("linear_svc", svm_clf2),
])
scaled_svm_clf1.fit(X, y)
scaled_svm_clf2.fit(X, y)
# Convert to unscaled parameters
b1 = svm_clf1.decision_function([-scaler.mean_ / scaler.scale_])
b2 = svm_clf2.decision_function([-scaler.mean_ / scaler.scale_])
w1 = svm_clf1.coef_[0] / scaler.scale_
w2 = svm_clf2.coef_[0] / scaler.scale_
svm_clf1.intercept_ = np.array([b1])
svm_clf2.intercept_ = np.array([b2])
svm_clf1.coef_ = np.array([w1])
svm_clf2.coef_ = np.array([w2])
# Find support vectors (LinearSVC does not do this automatically)
t = y * 2 - 1
support_vectors_idx1 = (t * (X.dot(w1) + b1) < 1).ravel()
support_vectors_idx2 = (t * (X.dot(w2) + b2) < 1).ravel()
svm_clf1.support_vectors_ = X[support_vectors_idx1]
svm_clf2.support_vectors_ = X[support_vectors_idx2]
fig, axes = plt.subplots(ncols=2, figsize=(width_inch*2, height_inch*1.5), sharey=True)
plt.sca(axes[0])
svc_decision_boundary(svm_clf1, 3, 7)
legend_labels = virgin_versi[["Target"]].values.ravel()
sns.scatterplot(x = X[:,0], y = X[:,1], hue=legend_labels, style = legend_labels)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper left", fontsize=14)
plt.title("$C = {}$".format(svm_clf1.C), fontsize=16)
plt.axis([2.9, 7, 0.9, 2.75])
plt.sca(axes[1])
svc_decision_boundary(svm_clf2, 3, 7)
g = sns.scatterplot(x = X[:,0], y = X[:,1], hue=legend_labels, style = legend_labels, legend=False)
plt.xlabel("Petal length", fontsize=14)
plt.title("$C = {}$".format(svm_clf2.C), fontsize=16)
plt.axis([2.9, 7, 0.9, 2.75])
plt.suptitle(main_title)
plt.tight_layout()
return fig
fig_num+=1
fig = soft_margin([1,100], "Figure %d: Tuning Parameter `C`"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
Extra
Neither the $\xi_i$ or their Lagrange multipliers appear in the Wolfe dual problem. This means we now have$^6$:
$$ \text{max} L_D \equiv \sum_i^n\alpha_i - \frac{1}{2}\sum^n_{i,k}\alpha_i\alpha_ky_iy_k\mathbf{x}_i\cdot \mathbf{x}_k \quad \text{s.t.} \quad 0 \leq \alpha_i \leq C, \quad \sum_i\alpha_iy_i = 0. $$This also has the same solution as before:
$$ \mathbf{\hat w} = \sum\limits^{N_S}_{i=1}\alpha_iy_i\mathbf{x}_i. $$Also, sometimes $C$ is defined as $C = \frac{1}{\nu N}$, where $0 < \nu \leq 1$ controls the fraction of misclasified points during the training phase$^7$.
Notes
Aims to address the situation where the boundary between two classes is not linear.
from sklearn.preprocessing import PolynomialFeatures
import warnings
nl1, y1 = make_classification(n_samples=300, n_features=2,
n_redundant=0, n_informative= 2,
n_classes=3, n_clusters_per_class=1,
random_state=14, class_sep=30,
hypercube=False)
y1 = np.where(y1==1,0,y1)
y1 = np.where(y1==2,1,y1)
nl2, y2 = make_moons(n_samples=300, noise=0.15, random_state=42)
def non_linear_examples(main_title):
fig, axes = plt.subplots(ncols=2, nrows=2, figsize=(width_inch*2, height_inch*2))
axes = axes.flatten()
plt.sca(axes[0])
sns.scatterplot(nl1[:,0], nl1[:,1], y1, legend=False)
plt.axis([-5, 5.5, -8, 8])
plt.sca(axes[1])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
svm_clf1 = LinearSVC(random_state=42).fit(nl1, y1)
svm_clf2 = LinearSVC(random_state=42).fit(nl2, y2)
# Convert to unscaled parameters
b1 = svm_clf1.intercept_[0]
b2 = svm_clf2.intercept_[0]
w1 = svm_clf1.coef_[0]
w2 = svm_clf2.coef_[0]
# Find support vectors (LinearSVC does not do this automatically)
t1 = y1 * 2 - 1
t2 = y2 * 2 - 1
support_vectors_idx1 = (t1 * (nl1.dot(w1) + b1) < 1).ravel()
support_vectors_idx2 = (t2 * (nl2.dot(w2) + b2) < 1).ravel()
svm_clf1.support_vectors_ = nl1[support_vectors_idx1]
svm_clf2.support_vectors_ = nl2[support_vectors_idx2]
plt.sca(axes[2])
svc_decision_boundary(svm_clf1, -5, 4, highlight=False, axes_limit = [-5, 5.5, -8, 8])
sns.scatterplot(nl1[:,0], nl1[:,1], y1, legend=False)
plt.sca(axes[3])
svc_decision_boundary(svm_clf2, -1.5, 2.5, highlight=False, axes_limit = [-1.5, 2.5, -1, 1.5])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
plt.suptitle(main_title)
plt.tight_layout()
return fig
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fig_num+=1
fig = non_linear_examples("Figure %d: Linear SVM on Non-Linear Data"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
We could consider enlarging the feature space to make the dataset linearly separable.
Example: We can see below that our $\mathbf{x}_1$ is not linearly separable but it is when we add in our second feature $\mathbf{x}_2 = (\mathbf{x}_1)^2$
# https://github.com/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
def poly_info(main_title):
X1D = np.linspace(-4, 4, 9).reshape(-1, 1)
X2D = np.c_[X1D, X1D**2]
y = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])
fig = plt.figure(figsize=(width_inch*2, height_inch))
plt.subplot(121)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.plot(X1D[:, 0][y==0], np.zeros(4), "bs")
plt.plot(X1D[:, 0][y==1], np.zeros(5), "g^")
plt.gca().get_yaxis().set_ticks([])
plt.xlabel(r"$x_1$", fontsize=20)
plt.axis([-4.5, 4.5, -0.2, 0.2])
plt.subplot(122)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.plot(X2D[:, 0][y==0], X2D[:, 1][y==0], "bs")
plt.plot(X2D[:, 0][y==1], X2D[:, 1][y==1], "g^")
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$ ", fontsize=20, rotation=0)
plt.gca().get_yaxis().set_ticks([0, 4, 8, 12, 16])
plt.plot([-4.5, 4.5], [6.5, 6.5], "r--", linewidth=3)
plt.axis([-4.5, 4.5, -1, 17])
plt.subplots_adjust(right=1)
plt.suptitle(main_title)
return fig
fig_num+=1
fig = poly_info("Figure %d: Adding Features to Linearly Separate Data"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
Using quadratic, cubic or higher-order polynomial functions we can project our data onto a higher-dimensional space via a mapping function $\phi$ where they are linearly separable (using a linear SVM model in this new feature space).
Example
$\phi(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{z}_1,\mathbf{z}_2,\mathbf{z}_3) = (\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}^2_1+\mathbf{x}^2_2)$
# TODO - if time code something like this up
fig_num+=1
print(color.BOLD+color.UNDERLINE+"Figure %d: 2D Dataset into Separable 3D Feature Space"%fig_num+color.END)
# Image from https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/ch03/ch03.ipynb
Image(filename='Images/03_13.png', width=width_pix)
We could instead use a "similarity function", such as a Gaussian Radial Basis Function (RBF),
$\phi_\gamma(\mathbf{x},\ell) = \exp(-\gamma||\mathbf{x}-\ell||^2)$.
This is a bell-shaped function which measures how much an instance resembles a landmark, with the function varying from 0 (far away) to 1 (at the landmark).
Example: Below we set our landmarks to $x_1 = -2$ and $x_1 = 1$.
# copied from https://github.com/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
def gaussian_rbf(x, landmark, gamma):
return np.exp(-gamma * np.linalg.norm(x - landmark, axis=1)**2)
def rbk_info(main_title):
gamma = 0.3
X1D = np.linspace(-4, 4, 9).reshape(-1, 1)
X2D = np.c_[X1D, X1D**2]
y = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])
x1s = np.linspace(-4.5, 4.5, 200).reshape(-1, 1)
x2s = gaussian_rbf(x1s, -2, gamma)
x3s = gaussian_rbf(x1s, 1, gamma)
XK = np.c_[gaussian_rbf(X1D, -2, gamma), gaussian_rbf(X1D, 1, gamma)]
yk = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])
fig = plt.figure(figsize=(width_inch, height_inch))
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.scatter(x=[-2, 1], y=[0, 0], s=150, alpha=0.5, c="red")
plt.plot(X1D[:, 0][yk==0], np.zeros(4), "bs")
plt.plot(X1D[:, 0][yk==1], np.zeros(5), "g^")
plt.plot(x1s, x2s, "g--")
plt.plot(x1s, x3s, "b:")
plt.gca().get_yaxis().set_ticks([0, 0.25, 0.5, 0.75, 1])
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"Similarity", fontsize=14)
plt.text(-2, 0.9, "$x_2$", ha="center", fontsize=20)
plt.text(1, 0.9, "$x_3$", ha="center", fontsize=20)
plt.axis([-4.5, 4.5, -0.1, 1.1])
plt.suptitle(main_title)
return fig
fig_num+=1
fig = rbk_info("Figure %d: RBF Landmarks"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
Using the example of $x_1=-1$ we can see it is a distance of 1 from the first landmark and 2 from the second.
If we set $\gamma = 0.3$ then our new features are:
$x_2 = \exp(-0.3 \times 1^2) \approx 0.74$
$x_3 = \exp(-0.3 \times 2^2) \approx 0.30$
In order to find the landmarks the simplist approach is just to create a landmark at each instance in the dataset.
import math
# copied from https://github.com/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
def gaussian_rbf(x, landmark, gamma):
return np.exp(-gamma * np.linalg.norm(x - landmark, axis=1)**2)
def rbk_info(main_title):
gamma = 0.3
X1D = np.linspace(-4, 4, 9).reshape(-1, 1)
X2D = np.c_[X1D, X1D**2]
y = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])
x1s = np.linspace(-4.5, 4.5, 200).reshape(-1, 1)
x2s = gaussian_rbf(x1s, -2, gamma)
x3s = gaussian_rbf(x1s, 1, gamma)
XK = np.c_[gaussian_rbf(X1D, -2, gamma), gaussian_rbf(X1D, 1, gamma)]
yk = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])
fig = plt.figure(figsize=(width_inch*2, height_inch))
plt.subplot(121)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.scatter(x=[-2, 1], y=[0, 0], s=150, alpha=0.5, c="red")
plt.plot(X1D[:, 0][yk==0], np.zeros(4), "bs")
plt.plot(X1D[:, 0][yk==1], np.zeros(5), "g^")
plt.plot(x1s, x2s, "g--")
plt.plot(x1s, x3s, "b:")
plt.gca().get_yaxis().set_ticks([0, 0.25, 0.5, 0.75, 1])
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"Similarity", fontsize=14)
plt.annotate(r'$\mathbf{x}$',
xy=(X1D[3, 0], 0),
xytext=(-0.5, 0.20),
ha="center",
arrowprops=dict(facecolor='black', shrink=0.1),
fontsize=18,
)
plt.text(-2, 0.9, "$x_2$", ha="center", fontsize=20)
plt.text(1, 0.9, "$x_3$", ha="center", fontsize=20)
plt.axis([-4.5, 4.5, -0.1, 1.1])
plt.subplot(122)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.plot(XK[:, 0][yk==0], XK[:, 1][yk==0], "bs")
plt.plot(XK[:, 0][yk==1], XK[:, 1][yk==1], "g^")
plt.scatter(x=[math.exp(-0.3*(0.**2.)), math.exp(-0.3*(3.**2.))], y=[math.exp(-0.3*(3.**2.)), math.exp(-0.3*(0.**2.))], s=150, alpha=0.5, c="red")
plt.xlabel(r"$x_2$", fontsize=20)
plt.ylabel(r"$x_3$ ", fontsize=20, rotation=0)
plt.annotate(r'$\phi\left(\mathbf{x}\right)$',
xy=(XK[3, 0], XK[3, 1]),
xytext=(0.65, 0.50),
ha="center",
arrowprops=dict(facecolor='black', shrink=0.1),
fontsize=18,
)
plt.plot([-0.1, 1.1], [0.57, -0.1], "r--", linewidth=3)
plt.axis([-0.1, 1.1, -0.1, 1.1])
plt.subplots_adjust(right=1)
plt.suptitle(main_title)
return fig
fig_num+=1
fig = rbk_info("Figure %d: RBF New Feature Space"%fig_num)
plt.close()
display(MatplotlibFigure(fig, centered=True))
However, by using feature engineering to enlarge our feature space, the larger the number of features, the higher computational burden.
Instead it is common to enlarge the feature space using an extension of a SVC termed a Support Vector Machine, which uses kernels.
The Kernel trick can relies on the fact we can define our SVM in the form of inner products.
$$ L_D(\alpha_i) = \sum_i^n\alpha_i - \frac{1}{2}\sum_{i,k}^n\alpha_i\alpha_ky_iy_k\mathbf{x}_i^{\mathrm T}\mathbf{x}_k \qquad \text{s.t.} \quad \forall_i \alpha_i \geq 0, \ \sum_i^n\alpha_iy_i = 0. $$Imagine we had a mapping $\phi$ which maps the data to some high dimensional Euclidean space
$$ \phi: \mathbb{R}^d \mapsto H, $$then, we could do dot products between vectors after the mapping in $H$:
$$ L_D(\alpha_i) = \sum_i^n\alpha_i - \frac{1}{2}\sum_{i,k}^n\alpha_i\alpha_ky_iy_k\phi(\mathbf{x}_i^{\mathrm T})\phi(\mathbf{x}_k) $$Instead we could use a kernel function,
$$ K(\mathbf{x}_i,\mathbf{x}_k) = \phi(\mathbf{x}_i^{\mathrm T})\Phi(\mathbf{x}_k). $$Notes
Second-Degree Polynomial Example$^2$
Suppose we wanted to apply a second-degree polynomial transformation to two 2D vectors, $\mathbf{a}$ and $\mathbf{b}$, and then compute the dot product. We could do this by:
$$ \phi(\mathbf{a})^{\mathrm T}\phi(\mathbf{b}) = \begin{pmatrix} {a_1}^2 \\ \sqrt{2}a_1a_2 \\ {a_2}^2 \end{pmatrix}^{\mathrm T} \begin{pmatrix} {b_1}^2 \\ \sqrt{2}b_1b_2 \\ {b_2}^2\end{pmatrix} = {a_1}^2{b_1}^2+2a_1b_1a_2b_2+{a_2}^2{b_2}^2. $$Instead we could use the kernel approach:
$$ K(\mathbf{a}, \mathbf{b}) = (\mathbf{a}^{\mathrm T}\mathbf{b})^2 = \begin{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}^{\mathrm T}\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}\end{pmatrix}^2 = (a_1b_1+a_2b_2)^2 = {a_1}^2{b_1}^2+2a_1b_1a_2b_2+{a_2}^2{b_2}^2. $$This is useful as it means we didnt have to map our data using $\phi$ first. This saves us time!
Notes
# TODO: Time allowing, look at if this increases as polynomial degree increases...
# it doesnt always work - guess it depends how my computer is feeling :P
# https://github.com/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
polynomial_feat = Pipeline([
("poly_features", PolynomialFeatures(degree=2)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
])
polynomial_svm = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel='poly', degree=2, C=10, random_state=42))
])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
print(color.BOLD+color.UNDERLINE+"Polynomial Feature Engineering (degree=2)"+color.END)
%timeit polynomial_feat.fit(nl2, y2)
print(color.BOLD+color.UNDERLINE+"Polynomial Kernel (degree=2)"+color.END)
%timeit polynomial_svm.fit(nl2, y2)
We still have all the same considerations, but replacing $\mathbf{x}_i^{\mathrm T} \mathbf{x}_k$ with $K(\mathbf{x}_i, \mathbf{x}_k)$ allows us to produce a SVM in infinite dimensional space.
$$ \sum_i^n\alpha_i - \frac{1}{2}\sum_i^n\sum_k^n\alpha_i\alpha_ky_iy_kK(\mathbf{x}_i, \mathbf{x}_k) \qquad \text{s.t.} \quad \forall_i \alpha_i \geq 0, \ \sum_i^n\alpha_iy_i = 0. $$In the test phase, we can use the support vectors$^6$:
$$ \begin{align*} f(\mathbf{x}^*) &= \sum_{i \in s}\hat\alpha_iy_i\phi(\mathbf{x}_i)\cdot \phi(\mathbf{x}^*) + \hat b \\ &= \sum_{i \in s}\hat\alpha_iy_iK(\mathbf{x}_i,\mathbf{x}^*) +\hat b, \end{align*} $$avoiding computing $\Phi(\mathbf{x}^*)$.
Note
The polynomial kernel of degree $d$ (a positive integer) can be defined as:
$$K(\mathbf{x}_i,\mathbf{x}_k) = \left(\gamma \left<\mathbf{x}_i, \mathbf{x}_k\right> + r \right)^d$$gamma
) broadly defines the width or slope of kernel function13.coef0
) roughly controls how much the model is influenced by high-degree polynomials2.degree
) is the degree of the polynomial.Notes
def plot_predictions(clf, axes):
x0s = np.linspace(axes[0], axes[1], 100)
x1s = np.linspace(axes[2], axes[3], 100)
x0, x1 = np.meshgrid(x0s, x1s)
X = np.c_[x0.ravel(), x1.ravel()]
y_pred = clf.predict(X).reshape(x0.shape)
y_decision = clf.decision_function(X).reshape(x0.shape)
plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
poly_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly", gamma=1, degree=3, coef0=1, C=5))
])
poly_kernel_svm_clf.fit(nl2, y2)
poly100_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly", gamma=10, degree=3, coef0=1, C=5))
])
poly100_kernel_svm_clf.fit(nl2, y2)
fig, axes = plt.subplots(ncols=2, nrows =2, figsize=(width_inch*2, height_inch*2), sharey=True)
axes = axes.flatten()
gamma_list=[0.5,10]
C_list=[0.5,10]
i=0
for gamma in gamma_list:
for C in C_list:
poly_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly",
gamma=gamma,
C=C,
degree=3, coef0=1))
])
poly_kernel_svm_clf.fit(nl2, y2)
warnings.simplefilter("ignore")
plt.sca(axes[i])
plot_predictions(poly_kernel_svm_clf, [-1.5, 2.45, -1, 1.5])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
plt.title(r"$\gamma = %.2f, C=%.2f$"%(gamma, C), fontsize=18)
plt.ylabel("")
i+=1
fig_num+=1
plt.suptitle("Figure %d: Polynomial Kernel Decision Boundaries (degree=3, coef0=1)"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
You shouldnt stick to the default settings, instead you want to search for optimal hyperparameters for the data. Good suggestions for search spaces are:
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, KFold
def hyper_search(model, params, X, y, save_path, n_iter=60, metric="accuracy",
cv = KFold(5), random_state=42, refit=True,
overwrite=False):
if os.path.exists(save_path) and overwrite==False:
#load the model
models = joblib.load(save_path)
else:
# check all param inputs are lists
if all(type(x)==list for x in params.values()):
search_type = "Gridsearch"
models = GridSearchCV(model, param_grid=params, scoring=metric, cv=cv,
refit=refit, return_train_score=True)
n_iter = len(list(itertools.product(*list(iter(params.values())))))
else:
search_type = "Randomsearch"
models = RandomizedSearchCV(model, param_distributions=params,
n_iter=n_iter, scoring=metric, cv=cv,
refit=refit, random_state=random_state,
return_train_score=True)
start = time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
models.fit(X, y)
print(search_type + " took %.2f seconds for %d candidates" % ((time() - start), n_iter))
joblib.dump(models, save_path)
return models
C_list = []
pwr = -5
for i in range(11):
C_list.append(2**pwr)
pwr+=2
gamma_list = []
pwr = -15
for i in range(10):
gamma_list.append(2**pwr)
pwr+=2
degree_list = list(range(1,5))
coef0_list = []
pwr = 1
for i in range(7):
coef0_list.append(2**pwr)
pwr+=1
poly_param_grid = {'svm_clf__C':C_list,
'svm_clf__gamma': gamma_list,
'svm_clf__degree': degree_list,
'svm_clf__coef0':coef0_list}
poly = SVC(random_state=42, kernel = 'poly', max_iter = 1e5)
poly_svm = Pipeline([
("scaler", StandardScaler()),
("svm_clf", poly)])
nl2_poly_gs = hyper_search(poly_svm, poly_param_grid, nl2, y2,
os.path.join(os.getcwd(), "Models", "moons_poly_gs.pkl"),
overwrite=False)
pd.DataFrame(nl2_poly_gs.cv_results_).sort_values("rank_test_score")[["param_svm_clf__C",
"param_svm_clf__gamma",
"param_svm_clf__degree",
"param_svm_clf__coef0",
"mean_test_score",
"std_test_score"]].head()
The most widely used kernel is the RBF kernel (also known as a Gaussian kernel)$^{4,8}$:
$$K(\mathbf{x}_i,\mathbf{x}_k) = \exp\left(-\gamma||\mathbf{x}_i-\mathbf{x}_k||^2\right),$$where $\gamma$ is a free parameter to be optimised and $||\mathbf{x}_i-\mathbf{x}_k||^2$ is the squared Euclidean distance.
$\gamma$ is often either a positive constant or $\frac{1}{2\sigma^2}$.
When classifying a test observation $\mathbf{x}^* = (x^*_1...x^*_p)$, only training observations close to $\mathbf{x}^*$ (in terms of Euclidean distance) will play a role in its class label. This is because $(x^*_j-x_{ij})^2$ will be large, so $\exp(-\gamma\sum^P_{j=1}(x^*_j-x_{ij})^2)$ will be small$^1$.
Notes
Euclidean distance8
$$d(\mathbf{x}_i, \mathbf{x}_k) \stackrel{\text{def}}{=} \sqrt{\left(x_{i1}-x_{k1}\right)^2+\left(x_{i2}-x_{k2}\right)^2 + \ldots + \left(x_{iN}-x_{kN}\right)^2} = \sqrt{\sum_{j=1}^D\left(x_{ij}-x_{kj}\right)^2}$$_"if gamma='scale'
(default) is passed then it uses 1 / (nfeatures * X.var()) as value of gamma"$^{12}$
the minus sign inverts the the distance measure to a similarity score10
$\gamma$ is effectively acting like a regularization hyperparameter, so like $C$ if your model is overfitting reduce it and underfitting then increase it.
Increasing $\gamma$ (gamma
) makes the bell-shaped curve narrower.
Decreasing $\gamma$ makes the bell-shaped curve wider.
gamma1, gamma2 = 1, 5
C1, C2 = 0.1, 10
hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2)
svm_clfs = []
for gamma, C in hyperparams:
rbf_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C))
])
rbf_kernel_svm_clf.fit(nl2, y2)
svm_clfs.append(rbf_kernel_svm_clf)
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(width_inch*2, height_inch*2), sharex=True, sharey=True)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
for i, svm_clf in enumerate(svm_clfs):
plt.sca(axes[i // 2, i % 2])
plot_predictions(svm_clf, [-1.5, 2.45, -1, 1.5])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
gamma, C = hyperparams[i]
plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16)
if i in (0, 1):
plt.xlabel("")
if i in (1, 3):
plt.ylabel("")
fig_num+=1
plt.suptitle("Figure %d: Gamma Kernel Decision Boundaries"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
rbf_param_grid = {'svm_clf__C':C_list,
'svm_clf__gamma':gamma_list
}
rbf = SVC(random_state=42, gamma="auto")
rbf_svm = Pipeline([
("scaler", StandardScaler()),
("svm_clf", rbf)])
nl2_rbf_gs = hyper_search(rbf_svm, rbf_param_grid, nl2, y2,
os.path.join(os.getcwd(), "Models", "moons_rbf_gs.pkl"),
overwrite=False
)
pd.DataFrame(nl2_rbf_gs.cv_results_).sort_values("rank_test_score")[["param_svm_clf__C",
"param_svm_clf__gamma",
"mean_test_score",
"std_test_score"]].head()
$C$ and $\gamma$ are tightly coupled.
Generally if you have a larger/narrow gamma
(e.g. $\gamma = 5$) you'll need more regularisation, so a larger $C$.
If you have a smaller/wider gamma
(e.g. $\gamma = 1$), a smaller value of $C$ should be used7.
grid_df = pd.DataFrame(nl2_rbf_gs.cv_results_)[["param_svm_clf__C",
"param_svm_clf__gamma",
"mean_test_score"]]
grid_df = grid_df.sort_values(["param_svm_clf__C", "param_svm_clf__gamma"])
grid_np = np.array(grid_df["mean_test_score"]).reshape(len(C_list), len(gamma_list))
tidied_gamma_lst = list(pd.Series(gamma_list).apply(np.format_float_scientific, precision=1)[0:3].values)
tidied_gamma_lst = tidied_gamma_lst+list(np.array(gamma_list[3:]).round(3))
grid_plt_df = pd.DataFrame(grid_np,
index = np.array(C_list).round(2),
columns=tidied_gamma_lst)
fig = plt.figure(figsize = (width_inch*1.5, height_inch*1.5))
ax = sns.heatmap(grid_plt_df,
vmin=min(grid_df["mean_test_score"]),
vmax=max(grid_df["mean_test_score"]),
#cmap="YlGnBu_r"
)
ax.collections[0].colorbar.set_label("Accuracy")
ax.invert_yaxis()
ax.set_xlabel("Gamma")
ax.set_ylabel("C",rotation = 0)
plt.yticks(rotation = 0)
plt.xticks(rotation = 0)
fig_num+=1
plt.suptitle("Figure %d: GridSearch Results for Gamma and C on the Moons Data"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
Extra Example
Lets have a look at the decision boundaries for our "optimal hyperparameters" as a comparison to those by the linear models we saw earlier.
nl1_poly_gs = hyper_search(poly_svm, poly_param_grid, nl1, y1,
os.path.join(os.getcwd(), "Models", "nl1_poly_gs.pkl"),
overwrite=False)
pd.DataFrame(nl1_poly_gs.cv_results_).sort_values("rank_test_score")[["param_svm_clf__C",
"param_svm_clf__gamma",
"param_svm_clf__degree",
"param_svm_clf__coef0",
"mean_test_score",
"std_test_score"]].head()
nl1_rbf_gs = hyper_search(rbf_svm, rbf_param_grid, nl1, y1,
os.path.join(os.getcwd(), "Models", "nl1_rbf_gs.pkl"),
overwrite=False
)
pd.DataFrame(nl1_rbf_gs.cv_results_).sort_values("rank_test_score")[["param_svm_clf__C",
"param_svm_clf__gamma",
"mean_test_score",
"std_test_score"]].head()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fig, axes = plt.subplots(ncols=2, nrows=3, figsize=(width_inch*2, height_inch*3))
axes = axes.flatten()
plt.sca(axes[0])
sns.scatterplot(nl1[:,0], nl1[:,1], y1, legend=False)
plt.sca(axes[1])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
plt.sca(axes[2])
plot_predictions(nl1_poly_gs, [-5, 5, -5, 7.5])
sns.scatterplot(nl1[:,0], nl1[:,1], y1, legend=False)
plt.sca(axes[3])
plot_predictions(nl2_poly_gs, [-1.5, 2.5, -1, 1.5])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
plt.sca(axes[4])
plot_predictions(nl1_rbf_gs, [-5, 5, -5, 7.5])
sns.scatterplot(nl1[:,0], nl1[:,1], y1, legend=False)
plt.sca(axes[5])
plot_predictions(nl2_rbf_gs, [-1.5, 2.5, -1, 1.5])
sns.scatterplot(nl2[:,0], nl2[:,1], y2, legend=False)
for i in range(4):
axes[i].axes.xaxis.set_visible(False)
axes[0].text(-6.5, 0, 'Data')
axes[2].text(-6.5, 0, 'Poly')
axes[4].text(-6.5, 0, 'RBF')
fig_num+=1
plt.suptitle("Figure %d: Best Non-Linear SVM Model Decision Boundary Using GridSearch"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
SVMs, along with many other machine learning estimators (e.g. l1 and l2 regularizers of linear models), are sensitive to feature scales.
If a feature has a variance orders of magnitude larger than others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.
# copied from https://github.com/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
Xs = np.array([[1, 50], [5, 20], [3, 80], [5, 60]]).astype(np.float64)
ys = np.array([0, 0, 1, 1])
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(Xs, ys)
fig = plt.figure(figsize=(width_inch*2, height_inch))
plt.subplot(121)
plt.plot(Xs[:, 0][ys==1], Xs[:, 1][ys==1], "bo")
plt.plot(Xs[:, 0][ys==0], Xs[:, 1][ys==0], "ms")
svc_decision_boundary(svm_clf, 0, 6)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x_1$ ", fontsize=20, rotation=0)
plt.title("Unscaled", fontsize=16)
plt.axis([0, 6, 0, 90])
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)
plt.subplot(122)
plt.plot(X_scaled[:, 0][ys==1], X_scaled[:, 1][ys==1], "bo")
plt.plot(X_scaled[:, 0][ys==0], X_scaled[:, 1][ys==0], "ms")
svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x'_1$ ", fontsize=20, rotation=0)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])
fig_num+=1
plt.suptitle("Figure %d: Sensitivity to Feature Scales"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
Notes
Standardization is especially important for RBF kernels.
These models assume that all features look like standard normally distributed data: Gaussian with zero mean and unit variance.
We can see below for example that the features in the Breast Cancer dataset are of completely different orders of magnitude$^{16}$.
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
X, y = load_breast_cancer(return_X_y=True, as_frame=True)
X = X.reindex(sorted(X.columns), axis=1)
X_train, X_test, y_train, y_test = train_test_split(X.values, y.values,
test_size = 0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
test_size = 0.2, random_state=42)
fig, ax = plt.subplots(figsize=(width_inch*2, height_inch*1.5))
plt.boxplot(X_train, vert=False)
plt.xscale("symlog")
plt.ylabel("Feature")
plt.xlabel("Feature magnitude")
ax.set_yticklabels(list(X.columns))
fig_num+=1
plt.suptitle("Figure %d: Feature Maginitudes for the Breast Cancer Dataset"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
from sklearn.metrics import accuracy_score
lin = LinearSVC(random_state=42)
rbf = SVC(random_state=42, gamma="auto")
linear_svm = Pipeline([
("scaler", StandardScaler()),
("svm_clf", lin)
])
rbf_svm = Pipeline([
("scaler", StandardScaler()),
("svm_clf", rbf)])
model_name = ["Linear Model", "Linear Model", "RBF Model", "RBF Model"]
for i, model in enumerate([lin, linear_svm, rbf, rbf_svm]):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
trained_model = model.fit(X_train, y_train)
pred_train = trained_model.predict(X_train)
pred_val = trained_model.predict(X_val)
if (i % 2) == 0:
scaled = "Unscaled"
else:
scaled = "Scaled"
score_df = pd.DataFrame([round(accuracy_score(y_train, pred_train),2),
round(accuracy_score(y_val, pred_val),2)], columns = ["Score"])
score_df["Data"] = ['Training', 'Validation']
score_df["Model Name"] = model_name[i]
score_df["Scaling"] = scaled
if i == 0:
scores_df = score_df
else:
scores_df = pd.concat([scores_df, score_df], axis=0)
#fig = plt.figure(figsize=(width_inch, height_inch))
#fig, ax = plt.subplots(figsize=(width_inch, height_inch))
sns_plot = sns.catplot(data = scores_df, y="Scaling", x = "Score", hue="Data", kind="bar", col="Model Name", ax=ax)
fig = sns_plot.fig
plt.xlim(0.5,1.0)
fig_num+=1
plt.suptitle("Figure %d: Effects of Scaling on SVM Overfitting"%fig_num)
plt.tight_layout()
plt.close()
display(MatplotlibFigure(fig, centered=True))
Notes
The kernel approach is an efficient computational approach to enlarge our feature space to accommodate a non-linear boundary.
Assume we have a new point $x^*$. If wanted to compute $f(x^*)$ using our linear classifier we would need to the inner product between $x^*$ and each training point $x_i$:
$$f(x) = \sum_{i\in s}\alpha_i \left<x^*,x_i\right> + b.$$Instead of actually calculating the inner product, we could instead use a generalisation, $K(x,x_{i^{\prime}})$, where $K$ is a kernel. We can now define the classifier as:
$$f(x) = \sum_{i\in s}\alpha_i K\left(x^*,x_i\right) + b.$$A kernel is a function that quantifies the similarity of two observations. For example, for a linear kernel we could use:
$$K(x_i, x_{i^\prime}) = \sum^p_{j=1}x_{ij}x_{{i^\prime}j},$$where we quantifiy the similarity of pairs of observations using Pearson (standard) correlation.
However, we could use other forms of kernel to fit the support vector classifier in a higher-dimensional space, such as a polynomial kernel:
$$K(x_i, x_{i^\prime}) = \left(\gamma \sum^p_{j=1}x_{ij}x_{{i^\prime}j} + r\right)^d.$$Another popular choice is the radial kernel:
$$K(x_i, x_{i^\prime}) = \exp\left(-\gamma\sum^p_{j=1}(x_{ij}-x_{{i^\prime}j})^2\right).$$Now might be a good time to try exercises 5-8.
import sys
from shutil import copyfile
# where the HTML template is located
dst = os.path.join(sys.prefix, 'lib', 'site-packages', 'nbconvert', 'templates', "classic.tplx")
# If its not located where it should be
if not os.path.exists(dst):
# uses a nb_pdf_template
curr_path = os.path.join(os.getcwd(),"..", "Extra", "classic.tplx")
# copy where it is meant to be
copyfile(curr_path, dst)
# Create HTML notes document (preferred)
!jupyter nbconvert 2_Support_Vector_Machines.ipynb \
--to html \
--output-dir . \
--template classic
!jupyter nbconvert 2_Support_Vector_Machines.ipynb \
--to slides \
--output-dir . \
--TemplateExporter.exclude_input=True \
--TemplateExporter.exclude_output_prompt=True \
--SlidesExporter.reveal_scroll=True
# For creating pdf notes (issues)
!jupyter nbconvert 2_Support_Vector_Machines.ipynb \
--to html \
--output-dir ./P_Prep \
--output 2_Support_Vector_Machines_no_code \
--TemplateExporter.exclude_input=True \
--TemplateExporter.exclude_output_prompt=True